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Abstract 

This paper investigates the feasibility of using classical Machine Learning (ML) methods to 

classify high-dimensional sign language videos into their corresponding gloss words (referred 

to here as “target words”). By analysing the application of ML on a gloss-free sign video dataset, 

a classification report is produced, which hints at the effectiveness of ML in classifying the 

target words based on their embeddings. Having obtained an F1 score of 97.49% after training 

a gloss-free model with Random Forest, this paper aims to prove that classical ML methods are 

sufficient in carrying out video-to-gloss Sign Language Transcription (SLT) accurately, without 

the need for deep learning methods. This emphasises the potential of ML in SLT, fostering 

inclusivity for the Deaf and Hard-of-Hearing community.  

 

1   Introduction 

Sign languages are widely used by over 72 million people within the Deaf and Hard-of-Hearing 

community globally [1]. By making use of facial expressions, body movements, and hand 

gestures, sign language conveys meaning and emotion from one person to another. Though not 

universal, sign language can transcend spoken language barriers, promoting inclusivity. 

Leveraging Artificial Intelligence helps bridge communication gaps between these 

communities, and the wider society. This includes SLT, which converts sign language into text, 

facilitating seamless communication.  

 

This paper first examines the strengths and limitations of both the gloss-based and gloss-free 

SLT approaches, before attempting to reproduce results from recent works by Ye et al. [2]. 

Thereafter, classical ML methods are applied to a gloss-free dataset, to assess if ML alone can 

effectively perform video-to-gloss transcription.   

 

2   Existing Sign Language Transcription Methods 

 

2.1   Gloss-based Methods 

Gloss-based SLT methods include Sign Recognition Pretrained (SRP) [3] and Self-Mutual 

Knowledge Distillation (SMKD) [4]. SRP uses the PHOENIX-2014T dataset [3], which 

contains sign videos by 9 different signers, featuring a vocabulary of 1066 unique signs, as well 

as German translations of 2887 different words which were automatically transcribed then 

manually verified and normalised. This dataset was compiled by professional sign language 

interpreters and glosses were annotated by deaf specialists [3]. Building upon the SRP method, 

SMKD incorporates a shared classifier that aligns the outputs of the visual and contextual 

modules at gloss level, ensuring that they complement each other rather than to function 

independently. Gloss segmentation is also introduced to break down sign videos into segments 

corresponding to each gloss, thereby enhancing feature representation [4]. 

 



Glossing refers to the practice of representing each morpheme in sign language using written 

words or phrases that best capture its meaning, mapping a sign gesture to its corresponding 

gloss. Through a pipeline approach, sign language videos are converted to pose, then pose-to-

gloss, and finally gloss-to-text. This one-to-one mapping method offers a simplified method of 

translating sign language, as it omits the complex nature of sign language, such as facial 

expressions. 

 

However, creating large datasets with gloss annotations is both time- and energy-consuming, 

as it involves manual annotations of every gesture present in a sign language video. To ensure 

the accuracy of the gloss annotations is maintained, the manpower and expertise of professional 

sign language interpreters and translators is also required. This further adds to the cost of SLT, 

which limits it from being able to be widely implemented. Additionally, gloss-based methods 

may also result in over-simplification, or loss of the grammatical structure of sign language.  

 

2.2   Gloss-free Methods 

Gloss-free methods of SLT include the Two-Stream Inflated 3D ConvNet (I3D) [5] and 

Visual-Language Pretraining (VLP) [6]. In the I3D model, filters and pooling kernels of the 

2D ConvNet are inflated into 3D. This allows the model to process seamless spatio-temporal 

feature extractors from sign language videos [5]. As for VLP, a 2-stage gloss-free approach is 

carried out to bridge visual-textual gaps using Contrastive Language-Image Pretraining (CLIP) 

and masked self-supervised learning, followed by the application of an encoder-decoder 

architecture with pre-trained models [6]. 

 

Unlike gloss-based methods, gloss-free methods do not rely on the use of gloss annotations, 

hence preserving the linguistic integrity of sign languages. ML models are trained to identify 

patterns and relationships directly from raw data (i.e. sign language videos). This approach 

captures the full complexity of sign language, allowing for greater flexibility of the model, 

which can perform well even on new unseen data.  

 

However, without the intermediate step of gloss annotations, gloss-free methods tend to be of 

lower accuracy. This lies in the difficulty distinguishing between subtle variations in sign 

gestures that could be closely represented in a feature space. To address this problem in gloss-

free methods, previous works have introduced strategies like Contrastive Learning [7], an 

image augmentation tool using self-supervised learning, and Gloss Attention [8], an attention 

mechanism that focuses on video segments in the same local semantic unit.  

 

3   Representation Density Problem  

In recent years, there have been great advancements in neural networks for SLT, such as the 

works by Moryossef et al. [9], Zhou et al. [10], and Lin et al. [11]. Yet, current SLT models still 

lag behind spoken language translations in terms of quality. This problem can be attributed to 

several factors, including the limited data available for ML models to train on, as well as the 

need to bridge the gap between natural language processing and computer vision.  

 

As a visual language, sign language faces the Representation Density Problem. That is, hand 

gestures that appear visually similar are also closely represented in the feature space. This 

would lead to the misinterpretation of these gestures by automated sign language translators, 

confusing words with similar visual representations, despite them having distinct meanings. 



Especially prominent in gloss-free SLT, models face difficulty in learning semantic boundaries 

in continuous sign videos, contributing to translation ambiguity [2]. 

 

To prove the existence of the Representation Density Problem, T-distributed Stochastic 

Neighbor Embedding (t-SNE) [12] is implemented in this paper. t-SNE is a statistical tool 

that enables high-dimensional data to be visualised in a lower-dimensional space. In this 

context, t-SNE is used to reduce the dimensionality of sentence embeddings to a two-

dimensional space, all while preserving the local relationships between the data points. By 

implementing t-SNE, the gloss-free dataset can be plotted on a scatter plot, with target words 

colour-coded. This visualisation helps to identify patterns such as distinct clusters, if any, so as 

to better understand and confirm the existence of the Representation Density Problem.   

 

4   Methodology 

 

4.1   Choice of Dataset Used 

The I3D model was used, which was pre-trained on DeepMind Kinetics [13], which consists 

of 400 classes of human actions with 400 unique YouTube clips per class. After learning the 

3D features from the pre-training stage, I3D was fine-tuned using ChaLearn249 IsoGD [14], a 

dataset specific to Sign Language Recognition [15]. Since I3D consists of 3D kernels inflated 

from 2D convolutional kernels, it can process spatial (frame-level) and temporal (across frames) 

information simultaneously. This makes I3D well-suited for SLT, given its efficiency in tasks 

concerning motion dynamics, such as the gestures in sign language.   

 

A gloss-free dataset was chosen over a gloss-based dataset as it would be more challenging to 

classify video embeddings by their target words, without the intermediate step of gloss 

annotations. If ML methods can perform well on even a gloss-free dataset, it further 

demonstrates that ML is sufficient for carrying out video-to-gloss SLT without relying on gloss 

annotations.  

 

4.2   Evaluating Sign Density Ratio 

Apart from using t-SNE to validate the Representation Density Problem, we computed a 

quantitative metric to measure the density of each gloss, 𝐺𝑖. The Sign Density Ratio (SDR) is 

defined as the ratio of the Intra-Gloss Distance (distance within a single gloss) to the average 

Inter-Gloss Distance (distance of a gloss to all other glosses).  

A lower SDR value indicates more distinct feature representations, reducing the likelihood of 

encountering the Representation Density Problem discussed in Section 3 and this is usually 

observed in gloss-based methods. On the other hand, a higher SDR value suggests sparse 

feature representations, increasing the difficulty of accurately classifying features into their 

gloss classes and this is often observed in gloss-free methods [2]. The formula is given as 

follows: 

𝑆𝐷𝑅(𝐺𝑖) =  
𝐷𝐺𝑖

𝑖𝑛𝑡𝑟𝑎

𝑎𝑣𝑔.𝐷𝐺𝑖
𝑖𝑛𝑡𝑒𝑟 =

𝐷(𝐺𝑖)

𝑀𝑒𝑎𝑛𝑗≠𝑖(𝐷(𝐺𝑖,𝐺𝑗))
   (1) 

Where:  

𝐷(𝐺𝑖 , 𝐺𝑗) =  
1

|𝐺𝑖|

1

|𝐺𝑗|
∑ 𝑑(𝑥, 𝑦)𝑥∈𝐺𝑖,𝑦∈𝐺𝑗

;   (2) 

 



𝐷(𝐺𝑖) =  
1

|𝐺𝑖|

1

|𝐺𝑖−1|
∑ 𝑑(𝑥, 𝑦)𝑥,𝑦∈𝐺𝑖,𝑥≠𝑦 ;   (3) 

 

Glosses 𝐺𝑖  and 𝐺𝑗  contain |𝐺𝑖|  and |𝐺𝑗|  instances respectively, and 𝑑(𝑥, 𝑦)  denotes the 

Euclidean distance between the embeddings of instances x and y. The average SDR, 

𝑆𝐷𝑅 = 𝑀𝑒𝑎𝑛(𝑆𝐷𝑅(𝐺𝑖)) , was calculated to evaluate the overall degree of representation 

density across all glosses. 

 

The above formulas were coded to evaluate the compactness of feature representations, thereby 

determining the accuracy of the SLT model. KMeans Clustering, an unsupervised ML 

algorithm, was used to cluster video embeddings (i.e. feature vectors from sign videos) into 

their target words based on their similarity.  

 

ALGORITHM SignDensityRatio(embeddings, num_clusters, target_words) 

    INPUT:  

        embeddings: n × d matrix of video embeddings # where n is the number of data points 

and d is the feature dimensions 

        num_clusters: Number of target word clusters 

        target_words: List of specific gloss words corresponding to clusters 

 

    OUTPUT:  

        sdr_values: Dictionary of SDR values for each key (target word)  

 

    PROCEDURE: 

    1. INITIALISE: 

        labels ← KMeans(embeddings, num_clusters) # Cluster embeddings using KMeans 

        clusters ← GroupByCluster(labels, embeddings) # Create clusters from labels 

 

    2. DEFINE Function IntraGlossDistance(cluster) 

        IF size(cluster) < 2 THEN 

            RETURN 0 # Ignore clusters with fewer than 2 points 

        END IF 

        dist_matrix ← PairwiseDistances(cluster, cluster) # Calculate Intra-Gloss D(i,j) 

        RETURN Mean(dist_matrix) 

 



    3. DEFINE Function InterGlossDistance(cluster1, cluster2) 

        dist_matrix ← PairwiseDistances(cluster1, cluster2) # Calculate Inter-Gloss D(i,j) 

        RETURN Mean(dist_matrix) 

 

    4. CALCULATE intra_distances FOR each cluster: 

        FOR each cluster_id, cluster IN clusters DO 

            intra_distances[cluster_id] ← IntraGlossDistance(cluster) 

        END FOR 

 

    5. CALCULATE avg_inter_distances FOR each cluster: 

        FOR each cluster_id, cluster IN clusters DO 

            inter_dist_sum ← 0 

            FOR each other_cluster_id, other_cluster IN clusters DO 

                IF cluster_id ≠ other_cluster_id THEN 

                    inter_dist_sum ← inter_dist_sum + InterGlossDistance(cluster, other_cluster) 

                END IF 

            END FOR 

            avg_inter_distances[cluster_id] ← inter_dist_sum / (num_clusters - 1)  

        END FOR 

 

    6. COMPUTE SDR values FOR each cluster: 

        FOR each cluster_id IN clusters DO 

            sdr_values[target_words[cluster_id]] ← intra_distances[cluster_id] / 

avg_inter_distances[cluster_id] 

        END FOR 

 

    RETURN sdr_values 

END ALGORITHM 

Figure 1: PseudoCode of the SDR when coded in Python 

 

 

 



4.3   Machine Learning Methods 

Classical ML methods were employed to address the supervised classification problem 

identified in this study. Methods such as the Support Vector Machine and Random Forest 

classifiers are effective tools for mapping video embeddings from the datasets to their 

corresponding target words. By evaluating and comparing the Precision, Recall, and F1-score 

of these methods, the study aims to identify which ML method will yield the best results on 

unseen data (i.e. continuous sign sentences) in the future, ultimately enabling meaningful and 

accurate SLT.  

 

As the “Others” label was a significantly larger class (Refer to Appendix A for distribution of 

target words), Synthetic Minority Over-sampling Technique (SMOTE) [16] was employed 

when plotting the confusion matrix. SMOTE is a data augmentation technique that generates 

synthetic samples for the minority classes (i.e. all labels other than “Others”), preventing them 

from being overlooked, to ensure all classes are represented.  

 

4.3.1   Support Vector Machine (SVM) Classifier 

The SVM classifier was used to find the decision boundary, or hyperplane, that best separates 

data points corresponding to the different target words. 2 experiments were conducted to train 

the SVM using 2 different kernels – ‘Linear’ and ‘Radial Basis Function (RBF)’ respectively. 

Experiments (see results in Section 5) show that the ‘RBF’ kernel gives a better result than 

the ‘Linear’ kernel, with 0.0223 higher in Precision, 0.0214 higher in Recall, and 0.0223 higher 

in F1-score. This suggests that the relationship between the data points is non-linear and 

complex. As a result, the ‘Linear’ kernel is unable to classify the data using a single straight 

line, as it cannot effectively separate the data based on their respective target words. 

 

4.3.2   Random Forest (RF) Classification 

The RF algorithm is an ensemble approach that aggregates the outputs of multiple decision 

trees to produce a singular result. This ensures a higher degree of accuracy, controlling the issue 

of overfitting. Experiments showed that RF outperformed the ‘RBF’ SVM, with 0.0224, 0.0215, 

and 0.0225 higher in Precision, Recall, and F1-scores respectively. This higher performance 

could be attributed by the shape of the training data being (8257, 1024), corresponding to high-

dimensional embeddings, and a large number of training data, conditions under which RF tends 

to excel. 

 

5   Experimental Results 



 

Figure 2: t-SNE Visualisation of PHOENIX-2014T Sign Features extracted using I3D 

Table 1: SDR Values for I3D Model 

Target Words SDR Value (2 d.p.) 

koennen 0.93 

grad 0.89 

gewitter 0.90 

zwischen 0.92 

nacht 0.92 

freundlich 0.91 

nordost 0.89 

Average SDR Value: 0.91 

 



From the t-SNE visualisation plot in Figure 2, we observed that video embeddings from I3D, 

the gloss-free dataset, are very sparsely distributed. This was supported by our computed 

average SDR value of 0.91 as shown in Table 1, which we consider high based on Ye et al.’s 

work [2], which achieved an SDR value of 0.83 for his reproduced I3D gloss-free features and 

0.66 for SMKD gloss-based features. This highlights the lack of distinct clustering in the I3D 

model, which makes it difficult for the model to carry out the video-to-gloss transcription.  

 

Table 2: Overall evaluation of ML models for classifying sign videos into gloss 

Model Kernel Precision Recall F1-score Accuracy 

SVM Linear 0.8529 0.8646 0.8567 0.97 

RBF 0.9524 0.9534 0.9524 0.97 

RF - 0.9748 0.9749 0.9749 0.97 

 

Table 2 shows that RF achieved the best results for Precision, Recall, and F1-score. Among the 

SVM models, ‘RBF’ performed better than the ‘Linear’ kernel, indicating the need for non-

linear decision boundaries to classify video embeddings effectively.  

 

Moreover, all the ML methods demonstrated exceptional classification results, with both the 

SVM and RF classifiers achieving weighted average Precision, Recall, F1 score, and Accuracy 

exceeding 0.95. (Weighted average was taken to account for the imbalanced dataset.) This 

proves that ML alone is indeed sufficient for the classification task, and consequently, video-

to-gloss transcription.  

 

6   Limitations and Future Work 

To extract sign features from specific gloss words, we averaged the features from all frames in 

a video, as the reference paper [2] did not provide specific instructions on how this is done. 

This method may not be optimal, as it may combine different sign gestures. Ideally, we would 

calculate the duration of each sign feature and average the vectors over that duration to more 

accurately represent the gloss word, capturing its full temporal span. However, due to a lack of 

duration information, we used the simplified approach of averaging across all frames. 

 

Additionally, due to time constraints, this paper focused primarily on the video-to-gloss 

pipeline and was unable to extend its research to include gloss-to-sentence SLT. As such, the 

sign videos are only classified by their corresponding target glosses, without producing full 

sentence translation for real-time SLT. Future work could also explore a broader range of 

datasets like the Singapore Sign Language, to enhance the research’s applicability and impact 

in different local contexts.  

 

7   Conclusion 

While the t-SNE plot and SDR calculated for the I3D dataset did not exactly match results from 

Ye et al. [2], similar trends were observed. I3D, a gloss-free dataset, had embeddings sparsely 

distributed in the feature space, which corresponded to a high SDR value. However, findings 



of this study have proven that classical ML models alone were able to effectively classify these 

embeddings into their corresponding gloss words, without the need for deep 

learning.                            
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Appendix  

 

A Distribution of Target Words 

 

Figure 3 shows the distribution of each target word. Results show that the vast majority of the 

samples fall under the “Others” class, which results in an imbalanced dataset. This was the 

reason that led to SMOTE being applied before training the data using the classical ML models, 

and for Weighted Average to be taken as the overall evaluation metric.  

 

 

Figure 3: Bar graph of the number of samples per gloss word before SMOTE was applied 

  



B Confusion Matrix and Classification Reports for Machine Learning training 

 

Table 3: Comparison of confusion matrices for different SVM kernels 

SVM  

(kernel: ‘Linear’) 

SVM  

(kernel: ‘RBF’) 

  

Conclusion: ‘RBF’ kernel performs better than ‘Linear’ kernel using SVM. 

 

Table 4: Comparison of confusion matrices for RF and SVM 

RF 

(100 trees) 

SVM  

(kernel: ‘RBF’) 

 

 

Conclusion: RF performs better than SVM using the ‘RBF’ kernel. 

  



C Confusion Matrix and Classification Report for Cross-Validation 

 

Figure 4 shows the confusion matrix and classification report produced after cross-validation 

is applied on the I3D model trained using RF. As RF was identified earlier as the best-

performing classical ML model for training I3D, this cross-validation serves as a precautionary 

measure to ensure that over-fitting has not occurred.  

 

Over-fitting would result in a high performance on the training data, but a poor performance 

on unseen test data. However, from the results, it can be confirmed that the I3D model does not 

suffer from overfitting after it was trained with RF. Rather, it was still able to learn meaningful 

patterns from the video embeddings and classify them into their corresponding gloss words 

effectively.  

 

 
Figure 4: Confusion matrix for cross-validation with RF 

 

 

 

 

 



Table 5: Classification report for cross validation (hold-out test set) 

 
 Precision Recall F1-Score Support 

koennen 0.92 0.81 0.87 1046 

grad 0.99 1.00 0.99 988 

gewitter 0.97 0.98 0.98 979 

zwischen 0.95 0.99 0.97 985 

nacht 0.97 0.99 0.98 956 

freundlich 0.92 0.96 0.94 987 

nordost 1.00 1.00 1.00 1011 

Others 1.00 1.00 1.00 1031 

 

 

Accuracy: 0.97 (Support: 7983) 

Weighted Average Precision (Test Set): 0.9648 

Weighted Average Recall (Test Set): 0.9652 

Weighted Average F1 Score (Test Set): 0.9644 
 

Table 6: Metric evaluation for cross-validation 

Metric Evaluation Mean SD 

Precision 0.9746 0.0008 

Recall 0.9748 0.0008 

F1 0.9746 0.0008 

 

 


